HIGH TECH IN EARTH SPACE RESEARCH

Study the accuracy achieved by orienting sets gyrocompass

Chernov I.V.

In cases of gyroscopic orientation with precision less than 10 seconds of arc azimuth is performed gyrotheodolite sets for the following schemes: targeting the target; orientation in opposite directions; the orientation of the binding directions; the orientation is a combination of angular and gyroscopic measurements.

The purpose of the application gyrotheodolite sets in the de-termination of the azimuth is increased accuracy, determine the azimuth. The improvement is obtained:

due to excessive dimensions, which allows you to apply equalization to reduce the effect of random errors on the final result;

by reducing the impact and methodological exceptions and account for systematic errors in the gyroscopic measure-ments.

Reduce the impact and methodological exclusion or accounting of systematic and random errors of gyroscopic measurements is achieved by using special techniques gyroscopic observations at the station (paragraph two orientation), depending on the type and characteristics of the applied gyrotheodolite. Identification and control of systematic errors at the gyroscopic orientation requires additional special studies applied gyrotheodolite. Due to the originality design of the technical characteristics of each type and each model of gyrotheodolite requires the development of research methodology for each individual model gyrotheodolite. So such studies may be difficult to implement and sometimes impracticable in the absence of a specialized La-laboratories, polygon etalonnaya and special equipment. Therefore, to reduce the influence of systematic errors in gyro oriented under used several instruments (most of gyrotheodolite the same model). This group of devices is called gyrotheodolite kit. The sum of the systematic errors of each gyrotheodolite when combined treatment can be considered as a random error for the entire set, the methodology for which is known. Also, in the case of orientation set gyrotheodolite, it is possible to control the stability of the instrument of amendment gyrotheodolite that allows you to assess the quality of the designated azimuth, technical condition of each device.

In connection with the above stated study conducted to identify the schemes most suitable for accurate orientation. The result of the study was recommendations for high-precision operational orientation with the use of sets of gyrotheodolite.

The subject of published articles on the nomenclature of specialties

2.2.15 Systems, networks and telecommunications (technical sciences)

2.3.1 System analysis, management and processing of information (technical sciences)

2.3.5 Mathematical and software of computing systems, complexes and computer networks (technical sciences)

2.3.6 Methods and information protection systems, information security (technical sciences)

2.5.13 Design, design and production of aircraft (technical sciences)

2.5.16 Dynamics, ballistics, the movement of aircraft (technical sciences)

Editorial board

Bobrowsky V.I.
(Ph.D., Associate Professor, Head of Department of "INTELTEH")

Borisov V.V.
(Ph.D., Professor, Actual Member of the Academy of Military Sciences, Professor, Department of Computer Science of MPEI)

Budko P.A.
(Ph.D., Professor, Department of Technical communication and automation in S.M. Budjonny Military Academy of the Signal Corps)

Budnikov S.A.
(Ph.D., associate professor, Actual Member of the Academy of Education Informatization, Head of the automated control systems Department in Russian Air Force Military Educational and Scientific Center “Air Force Academy named after Professor N.E. Zhukovsky and Y.A. Gagarin”)

Verhova G.V.
(Ph.D., Professor, Head of Department of Automation communication companies In the Bonch-Bruevich Saint Petersburg State University of Telecommunications)

Goncharevsky V.S.
(Ph.D., Professor, Honored Worker of Science and Technology of the Russian Federation, Professor of technologies and technical support and maintenance of the automated control systems in Military Space Academy of A.F. Mozhaysky)

Komashinskiy V.I.
(Ph.D., Professor, professor of processing and transmission discrete messages in the Bonch-Bruevich Saint Petersburg State University of Telecommunications)

Kirpanev A.V.
(Ph.D., Associate Professor, Head of JSC "Scientific Production Enterprise "Radar MMS")

Kurnosov V.I.
(Ph.D., Professor, Academician of Academy of Sciences of the Arctic, Academician of the International Academy of Informatization, International Academy of defense, security, law and order, corresponding member of the Academy of Natural Sciences, Senior Researcher" Open Joint Stock Company "Scientific Research Institute "Rubin")

Manuilov Y.S.
(Ph.D., Professor, Department of automated control systems space complexes in Military Space Academy of A.F. Mozhaysky)

Morozov A.V.
(Ph.D., Professor, Actual Member of the Academy of Military Sciences, Head of the Department of automated command and control systems in Military Аcademy of troops of antiaircraft defense)

Moshak N.N.
(Ph.D., Associate Professor, head of the department of "INTELTEH")

Prorok V.Y.
(Ph.D., Professor, professor of automatic control systems in Military Space Academy of A.F. Mozhaysky)

Semenov S.S.
(Ph.D., associate professor, professor of technical communication and automation in S.M. Budjonny Military Academy of the Signal Corps)

Sinicyn E.A.
(Ph.D., Professor, Head of the Research Department of JSC "The All-Russian research institute of radio equipment")

Shatrakov Y.G.
(Ph.D., Professor, Honored Worker of Science, Scientific Secretary of JSC "The All-Russian research institute of radio equipment")